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Abstract

We investigate under which conditions an equivariant fiber bundle whose base, total
space and fiber are GKM manifolds induces a fibration or fiber bundle of the corre-
sponding GKM graphs. In particular, we give several counterexamples. Concerning
the converse direction, i.e., the realization problem for fiber bundles of GKM graphs,
we restrict to the setting of fiberwise signed GKM fiber bundles over n-gons whose
fiber is the GKM graph of a full flag manifold. While it was known that any such
bundle is realizable for a CP 1-fiber, we observe that new phenomena occur in higher
dimensions where realizability depends on the twist automorphism of the GKM fiber
bundle. We classify possible twist isomorphsims and show that realizability can be
decided in terms of our classification.

1 Introduction

One of the most striking connections between combinatorics and the geometry of manifolds
is the Delzant correspondence between symplectic toric manifolds and Delzant polytopes
[5]. Delzant’s Theorem states that both worlds are equivalent. While the spirit of this
phenomenon carries over to more general settings, the precise nature of the correspondence
between geometry and combinatorics is more obscure outside of the toric context. In this
paper we are concerned with the notion of GKM manifolds, named after and popularized
by [9]. In this setting, much of the topology of the manifold is encoded in a labeled graph,
the GKM graph. The abstract notion of a GKM graph has been introduced in [12] and
studied independently from geometry. Many classical geometric phenomena turn out to have
combinatoric counterparts. In particular, the authors introduce the notion of a fibration of
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GKM graphs. This is further developed in [13], where the refined notion of a fiber bundle
of GKM graphs is introduced and a combinatorial Leray-Hirsch Theorem is proved.

In light of the original motivation of understanding the relation between both worlds,
an immediate natural question is the following: which abstract GKM graphs are realized
geometrically by a GKM manifold? While this is largely unknown, the situation has been
successfully studied in dimensions ≤ 6 [6] where a one-to-one correspondence between certain
GKM manifolds and graphs continues to hold akin to the toric situation. The problem can
of course be asked subject to more specialized situations, and the goal of this paper is to
shed light on the correspondence between the geometric and combinatoric notions of fiber
bundles. More specifically, two immediate questions arise:

(i) When does an equivariant fiber bundle of GKM manifolds induce the combinatoric
situation of a fiber bundle of GKM graphs?

(ii) When is a fiber bundle of GKM graphs realized by an equivariant fiber bundle of GKM
manifolds?

These questions have been addressed in [7] specifically for manifolds of dimension 6. Some-
what simplified, the answer to both questions turns out to be always positive, hence allowing
free passage between geometry and combinatorics. The main results of this paper illustrate
that neither question has a simple answer in higher dimensions.

We study question (ii) in the situation where the fiber graph Γ is that of a generalized
flag G/T , where G is a simply connected compact Lie group with maximal torus T ⊂ G,
and the base graph B is 2-regular. In this situation, the combinatorics of the fiber bundle
are governed by a single holonomy automorphism Φ of Γ that arises from a path around
the base graph. We study the automorphism group of Γ and obtain a structural result in
Theorem 4.10, showing that, in case Φ preserves the signed structure on on Γ induced by a
T -invariant Kähler structure, there is a unique decomposition Φ = Φ1 ◦ Φ2 with Φ1 coming
from left multiplication with an element of the Weyl group of G (Type 1) and Φ2 induced
by an outer automorphism of G (Type 2). The answer to question (ii) above then can be
completely answered in terms of this decomposition (cf. Theorem 5.2):

Theorem 1.1. Let Γ → Γ′ → B be a T -GKM fiber bundle, where Γ is the GKM graph of
G/T and B is 2-regular. Furthermore assume that the common kernel of the weights of B
is a connected subgroup of T and that the twist automorphism Φ = Φ1 ◦ Φ2 preserves the
connection and the signed structure on Γ, where Φ1,Φ2 denotes the unique decomposition in
Type 1 and Type 2 automorphisms.

(i) If Φ2 = Id, then the bundle is realizable. More precisely, there exists a smooth T -
equivariant fiber bundle Z → X with fibers over fixed points twisted equivariantly dif-
feomorphic to G/T , such that the T -action on Z is of GKM type with GKM graph Γ′

and X is a quasitoric 4-fold with GKM graph B.

(ii) If Φ2 ̸= Id, then the map H∗(Γ′) → H∗(Γ) induced by the fiber inclusion is not sur-
jective. In particular, the GKM fiber bundle is not realizable by an equivariant fiber
bundle in which base, total space, and fibers over fixed points are GKM manifolds.
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In particular, unlike in the low-dimensional situation, the answer can be both positive
and negative. Concrete examples of the realizable and the non-realizable case are provided
in Examples 6.7 and 4.3 respectively.

With regards to question (i), the answer turns out to be that it is not easy to give
conditions which are simultaneously sufficient and necessary to ensure a fiber bundle of
GKMmanifolds induces a fiber bundle of GKM graphs (cf. Remark 3.2). Regarding sufficient
conditions, we have (cf. Theorem 3.1)

Theorem 1.2. Let F →M → B be a fiber bundle in which all spaces are T -GKM manifolds
and the projection map M → B is equivariant.

(i) Then the induced maps on one-skeleta induce a GKM fibration.

(ii) If additionally, for each vertex v of the graph of M , the weights of any horizontal edge
adjacent to v and any two vertical edges adjacent to v are linearly independent, then
transport along a horizontal edge induces a graph isomorphism between the respective
fiber graphs.

(iii) Assume that for each vertex v of the graph of M , the weights of any horizontal edge
adjacent to v and any three vertical edges adjacent to v are linearly independent. Fur-
thermore assume that any adjacent set of vertical edges can be completed to a basis of
the weight lattice. Then the induced GKM fibration is a GKM fiber bundle.

Part (i) was proved prior to this paper in [7] but we repeat the proof here since it is more or
less contained in the considerations needed for (ii) and (iii). The jump from a GKM fibration
to a GKM fiber bundle requires horizontal transport to respect the graph structures of the
fibers –as in (ii)– and requires the labels of the fiber graphs to transform uniformly through
a linear automorphism –which is assured by the additional conditions of (iii). However both
properties can individually fail for an equvariant fiber bundle of GKM manifolds, even under
strong additional assumptions on the equivariant local trivializations (see Examples 3.3 and
3.4). In particular, this shows that additional conditions as in (ii) and (iii) are needed in
order for the statement to hold. On the other hand, the combinatoric restrictions made in
(ii) and (iii) are pretty severe and far from necessary: they are not satisfied by most of the
examples of GKM fiber bundles which we have shown to be realizable in Theorem 1.1 part
(i).

The counterexamples 3.3 and 3.4 might suggest that the notion of a GKM fiber bundle
is too restrictive for the general geometric setup considered in this paper. However, at
the same time there are very natural examples of fiber bundles of GKM graphs arising
from geometry [13, Theorem 4.1] and the conditions are not restrictive enough to ensure
geometric realizability as shown by Theorem 1.1 part (ii). In conclusion, the correspondence
between geometry and combinatorics is partially successful when restricted to fiber bundles
of GKM manifolds, but eludes a complete and simple description in the currently developed
terminology.

The structure of the article is as follows: In Section 2 we recap some important notions
about GKM manifolds, GKM fibrations and fiber bundles, as well as some results about
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GKM actions on homogeneous spaces and quasitoric manifolds. Section 3 investigates in
more detail the conditions under which an equivariant fiber bundle, whose base, total space,
and fiber are GKM manifolds, induces a GKM fibration or a GKM fiber bundle. Section 4
classifies automorphisms of GKM graphs of full flag manifolds, which are used in Section 5
to understand realizability of GKM fiber bundles whose fibers are GKM graphs of full flag
manifolds. Finally, in Section 6 we construct examples of GKM fiber bundles that can be
realized in the sense of Section 5.

Acknowledgements: The first, second and fourth named author gratefully acknowledge
funding of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –
452427095.

2 Preliminaries

2.1 GKM actions and graphs

For an action of a compact torus T on a smooth manifold M , we define its k-skeleton Mk

to be
Mk := {p ∈M | dimT · p ≤ k},

which is the union of all T -orbits of dimension at most k. In GKM theory, named after
Goresky–Kottwitz–MacPherson [9], of particular importance is the 0-skeleton, which is the
same as the T -fixed point set MT , and the 1-skeleton of the action.

Definition 2.1. AssumingM to be compact, connected and orientable, with vanishing odd-
dimensional rational cohomology, we say that the T -action is GKM, or of GKM type, if MT

is a finite set of points and M1 a finite union of T -invariant 2-spheres.

The definition is tailored towards the fact that for a GKM T -action on M , the orbit
space M1/T has the structure of a graph (with vertices corresponding to fixed points, and
one edge for each invariant 2-sphere). This graph carries a natural labeling of the edges
by weights of the isotropy representations. More precisely, for any fixed point p ∈ MT ,
the T -isotropy representation decomposes into 2-dimensional irreducible submodules, each
one being tangent to exactly one of the invariant 2-spheres containing p. We label the
corresponding edge with the weight of this submodule, which is an element in Z∗

t /±1, where
t is the Lie algebra of T and Z∗

t ⊂ t∗ is the weight lattice of T . This labelled graph is called
the GKM graph of the T -action.

In this paper we will be concerned with the realization problem for abstract GKM graphs.
Let us recall this notion, going back to [12]. We consider graphs Γ with finite vertex set V (Γ)
and finite edge set E(Γ); we allow multiple edges between vertices, but no loops. Edges of
graphs do not have a fixed orientation; formally, E(Γ) contains every edge twice, once for
each possible orientation. In this way, for an edge e ∈ E(Γ), it is well-defined to speak about
its initial vertex i(e) and terminal vertex t(e). For e ∈ E(Γ) we denote by ē the same edge,
but with opposite orientation. For a vertex v we denote E(Γ)v = {e ∈ E(Γ) | i(e) = v}.
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Definition 2.2. A connection on an n-valent graph Γ is a collection of bijections ∇e :
E(Γ)i(e) → E(Γ)t(e), for e ∈ E(Γ), satisfying

(i) ∇ee = ē and

(ii) ∇ē = (∇e)
−1 for any e ∈ E(Γ).

In the following, for an element a ∈ Zm/±1 we will call a lift of a any of the two elements
in Zm that project to a. Moreover, note that the notion of linear independence is meaningful
for elements in Zm/± 1.

Definition 2.3. We fix natural numbers n and m. An (abstract) GKM graph (Γ, α) is a
pair of an n-valent graph Γ and a labeling of the edges α : E(Γ) → Zm/ ± 1, called axial
function, satisfying the following properties:

(i) For any v ∈ V (Γ) and e, f ∈ E(Γ)v, we have that α(e) and α(f) are linearly indepen-
dent.

(ii) There exists a connection ∇ on Γ which is compatible with α: for any v ∈ V (Γ) and
e, f ∈ E(Γ)v and any choice of lifts α̃(e) of α(e) and α̃(f) of α(f) there is ε ∈ {±1}
and c ∈ Z such that

α̃(∇ef) = εα̃(f) + cα̃(e).

(iii) α(ē) = α(e) for all e ∈ E(Γ).

If, for any v ∈ V (Γ) and any k adjacent edges e1, . . . , ek, the labels α(e1), . . . , α(ek) are
linearly independent, we call Γ an (abstract) GKMk graph.

The GKM graph of a GKM action is always an abstract GKM graph in the sense of
Definition 2.3. The existence of a compatible connection was shown in [12] and [8, Proposition
2.3].

Definition 2.4. A signed (abstract) GKM graph is a pair (Γ, α) of an n-valent graph Γ and an
axial function α : E(Γ)→ Zm such that (i) and variants of (ii) and (iii) in Definition 2.3 hold:
in (ii), there shall exist for all v and e, f ∈ E(Γ)v some c ∈ Z such that α(∇ef) = α(f)+cα(e);
in (iii), we demand α(ē) = −α(e) for all edges.

Given a signed abstract GKM graph (Γ, α), the composition π◦α, where π : Zm → Zm/±1
is the projection, defines on Γ an axial function in the sense of Definition 2.3. We say that
(Γ, α) is a signed structure on the abstract GKM graph (Γ, π ◦ α).

In Section 2.2 below, we will need a rather general notion of morphism between graphs
which allows for the collapsing of edges.

Definition 2.5. Given graphs Γ and Γ′ as before (finite, possibly with multiple edges, but
without loops), a morphism Φ : Γ→ Γ′ consists of a map V (Γ)→ V (Γ′) on vertices, as well
as a partial map on edges, both again denoted by Φ. More precisely, any edge e ∈ V (Γ) with
Φ(i(e)) ̸= Φ(t(e)) is sent to an edge Φ(e) connecting Φ(i(e)) with Φ(t(e)). We assume that
Φ(ē) = Φ(e); on edges e with Φ(i(e)) = Φ(t(e)) the map Φ is not defined.
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In case of a morphism Φ : Γ → Γ′ such that Φ : V (Γ) → V (Γ′) and Φ : E(Γ) → E(Γ′)
are bijective, this definition restricts to the usual definition of an isomorphism of graphs.

Definition 2.6. Consider two abstract GKM graphs (Γ, α) and (Γ′, α′), where both axial
functions α and α′ take values in Zm/±1. Then an isomorphism Φ : Γ→ Γ′ is an isomorphism
of GKM graphs together with a linear isomorphism Ψ : Zm → Zm such that

α′(Φ(e)) = Ψ(α(e))

for all e ∈ E(Γ), where Ψ denotes also the induced map Zm/± 1→ Zm/± 1. If Γ = Γ′, then
we call Φ an automorphism of the GKM graph Γ.

One has natural isomorphisms t∗Z
∼= H1(T ;Z) ∼= H2(BT ;Z) where BT denotes the clas-

sifying space of T . Hence the labels embed into the ring H∗(BT ;Z) which is a polynomial
ring generated in degree 2. For a GKM graph (Γ, α) one defines the (equivariant) graph
cohomology

H∗
T (Γ) =

f ∈ ∏
v∈V (Γ)

H∗(BT ;Z) | fi(e) ≡ ft(e) mod α(e) for all e ∈ E(Γ)


and the non-equivariant graph cohomology is given by

H∗(Γ) = H∗
T (Γ)/(H

>0(BT ;Z) ·H∗
T (Γ)).

Then by [9], if Γ is the GKM graph of a GKM manifold M , one indeed has H∗
T (M ;Z) ∼=

HT (Γ) and H
∗(M ;Z) ∼= H(Γ). Although other coefficient rings are possible we will always

use integral coefficients in this paper and suppress coefficients from the notation.
An isomorphism of GKM graphs induces a map on the graph cohomology. If Φ: Γ→ Γ′

is an isomorphism with compatible linear transformation Ψ: Zm → Zm, and f ∈ HT (Γ
′)

then one defines the pullback Φ∗ : H∗
T (Γ

′) → H∗
T (Γ) via Φ∗(f)v = Ψ−1(fΦ(v)). One quickly

checks that the divisibility conditions in the definition of H∗
T (Γ) are satisfied for Φ∗(f). By

taking quotients one obtains an induced map H∗(Γ′)→ H∗(Γ).

2.2 GKM fiber bundles

Let us review the notions of GKM fibration and GKM fiber bundle, introduced in [13],
slightly modified as in [7] to take account of multiple edges between vertices, see Remark
2.11.

Given a morphism π : Γ′ → B of graphs as in Definition 2.5, we call an e ∈ E(Γ′) vertical
if π(i(e)) = π(t(e)), otherwise horizontal. For v ∈ V (Γ′), we denote by Hv ⊂ E(Γ′)v the set
of horizontal edges emanating from v.

Definition 2.7. A morphism π : Γ′ → B is called a graph fibration if for all v ∈ V (Γ′), π
defines a bijection Hv → E(B)π(v).
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Given a graph fibration π : Γ′ → B and a vertex v ∈ V (Γ′), an edge e ∈ E(B)π(v) admits
a unique horizontal lift ẽ to an edge at v.

Definition 2.8. Let (Γ′, α) and (B,αB) be abstract GKM graphs, such that both axial
functions map to Zm/ ± 1. Then a graph fibration π : Γ′ → B is called a GKM fibration if
there exist connections ∇ on Γ′ and ∇B on B, compatible with α respectively αB, such that

(i) For every horizontal edge e in Γ′ we have αB(π(e)) = α(e).

(ii) For every edge e ∈ E(Γ′), the connection ∇e : E(Γ′)i(e) → E(Γ′)t(e) respects the
decomposition into horizontal and vertical edges.

(iii) For any v ∈ V (Γ′) and horizontal edges e, e′ ∈ E(Γ′)v we have π(∇ee
′) = ∇B

π(e)π(e
′).

For a GKM fibration π : (Γ′, α) → (B,αB) and a vertex p ∈ V (B), we define Γp to be
the subgraph of Γ′ with vertex set V (Γp) := π−1(p) and edge set E(Γp) all the (vertical)
edges in Γ′ connecting two of these vertices. If Γ′ is n-valent, and B m-valent, then Γp is an
(n−m)-valent GKM graph.

Remark 2.9. In general, given the connection ∇B, there could be several connections ∇
on Γ′ satisfying the conditions of Definition 2.8: while the transport of horizontal edges is
uniquely determined, the transport of vertical edges is not. However: in case the weights of
any horizontal edge and any two adjacent vertical edges are linearly independent, then for
any horizontal edge e ∈ E(Γ′), the connection ∇e is also uniquely determined on vertical
edges; in case the weights of any three adjacent vertical edges are linearly independent, then
for any vertical edge e ∈ E(Γ′), the connection ∇e is uniquely determined on vertical edges.

Any edge e ∈ E(B), with p := i(e) and q := t(e), defines a bijection Φe : V (Γp)→ V (Γq),
by sending a vertex v ∈ V (Γp) to the endpoint of the horizontal lift ẽ of e with i(ẽ) = v. In
general, this map is not part of a morphism of graphs Φe : Γp → Γq, see [13, Example2.10].
Even if it is, this graph morphism is not necessarily unique, as we allow multiple edges
between vertices. In the following definition, however, there is such a graph morphism,
which is even compatible with some choice of connections.

Definition 2.10. Consider a GKM fibration π : (Γ′, α)→ (B,αB), together with compatible
connections ∇ on Γ′ and ∇B on B as in Definition 2.8. We assume additionally that for every
v ∈ V (Γ′), every horizontal edge ẽ ∈ Hv, with e = π(ẽ), and every vertical edge e′ ∈ E(Γ′)v,
the edge ∇ẽe

′ connects Φe(v) with Φe(t(e
′)). In this case we define Φe(e

′) := ∇ẽe
′ and obtain

isomorphisms of graphs Φe : Γp → Γq, for p := i(e) and q := t(e). In case all these maps are
isomorphisms of GKM graphs, i.e., there exist compatible linear isomorphisms Zm → Zm,
we call π a GKM fiber bundle.

Remark 2.11. We have made slight adjustments to the notion of GKM fiber bundle when
compared to its introduction in [13]. Most importantly we are considering integer coefficients
while the original reference works over R. The reason for this choice is that GKM graphs
of manifolds always come with integral coefficients. Hence with regards to the question
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of realizing GKM graphs through manifolds, as is studied in this paper, this restriction is
essential.

Secondly, in [13] GKM graphs carry signed structures, which is not necessarily the case for
us (on the geometric side this corresponds to the fact that our manifolds are not necessarily
almost complex). The adaptation of the definition of GKM fiber bundle is straight forward
in this regard.

Finally, in [13] the axial function of the fiber graphs Γp is considered as taking values in
the rational span of the fiber weights, while we take labels in all of Zm/±1 when talking about
the isomorphisms between the fiber graphs (this reflects the fact, that fibers over T -fixed
points are naturally T -manifolds). After intersecting said span with Zm, an isomorphism
of this sublattice can always be extended to an automorphism of Zm. Conversely, any
isomorphism Zm → Zm as in Definition 2.10 necessarily maps the span of the fiber weights
to itself. Therefore, Definition 2.10 is indeed equivalent to [13] in this regard.

As all fiber graphs Γp of a GKM fiber bundle Γ′ → B are isomorphic, we call this GKM
graph Γ, defined up to isomorphism, the fiber of Γ′ → B, and speak about a GKM fiber
bundle Γ→ Γ′ → B.

Part (i) of the following definition was given in [7, Definition 3.2], as an intermediate
stage between GKM fibrations between unsigned and signed GKM graphs. It will be of
relevance for us below in Section 5 in the context of GKM fiber bundles whose fiber is a
generalized flag manifold. Part (ii) is an adaptation of (i) to the concept of GKM fiber
bundles.

Definition 2.12. (i) Let π : (Γ, α) → (B,αB) be a GKM fibration, respectively a GKM
fiber bundle. Let F ⊂ E(Γ) be the set of vertical edges and α̃ : F → Zm a lift of
α : E(Γ) → Zm/ ± 1 satisfying α̃(e) = −α̃(e) for all e ∈ F . Then we call π, together
with α̃, a fiberwise signed GKM fibration respectively fiber bundle if the connections
∇ and ∇B as in Definition 2.8 respectively 2.10 can be chosen in a way such that
α̃(∇ee

′) ≡ α̃(e′) mod α(e) for any e′ ∈ F and e ∈ E(Γ).

(ii) If π is additionally a GKM fiber bundle we call it fiberwise signed if the automorphisms
Φe for every horizontal edge e (see Definition 2.10) can be chosen to respect the signed
structure, i.e. the associated linear transformation Ψe : Zm → Zm satisfies α̃ ◦ Φe =
Ψe ◦ α̃.

2.3 GKM actions on homogeneous spaces

In this section we summarize the main result of [11], which describes the GKM graph of
equal rank homogeneous spaces in terms of the root systems of the occurring Lie groups.

Consider a homogeneous space G/K, where K ⊂ G is a compact connected subgroup of
a compact connected semisimple Lie group. We assume that G and K have the same rank,
so that a maximal torus T ⊂ K is at the same time a maximal torus of G. On G/K we
consider the T -action by left multiplication. We denote by ∆K ⊂ ∆G ⊂ Z∗

t the root systems
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of K and G with respect to T , respectively, and put ∆G,K := ∆G \ ∆K . For α ∈ ∆G we
denote the corresponding reflection by σα, thus

σα(β) = β − 2⟨α, β⟩
|α|2

α

with respect to the Killing form ⟨·, ·⟩. We denote by W (G) and W (K) the Weyl groups of
G and K; these may be defined as the quotients NG(T )/T and NK(T )/T of the normalizers
of T . We also consider them as finite groups acting on t, or t∗, via the isomorphism t ∼= t∗

given by the Killing form. Explicitly, w = gT ∈ W (G) acts on t∗ by w · α := α ◦ Ad−1
g . In

this way, the reflections σα become elements of W (G). Then from [11, Theorem 2.4] and
[11, Section 2.2.7] we have

Theorem 2.13. The T -action on G/K is of GKM type. Its GKM graph Γ is as follows:

(a) V (Γ) = W (G)/W (K). We denote elements in V (Γ) by [w] := wW (K), with w ∈
W (G).

(b) For any [w] ∈ V (Γ), we have E(Γ)[w] = ∆G,K/± 1. Explicitly, for any α ∈ ∆G,K/± 1,
there is an edge connecting [w] and [wσα] with label w · α.

(c) There is a canonical connection defined as follows: Let [w] ∈ V (Γ) and let e ∈ E(Γ)[w],
such that e joins [w] and [wσα] with label w · α. If f ∈ E(Γ)[w] is the edge joining [w]
and [wσβ] with label w · β then we set ∇ef as the edge joining [wσα] and [wσασβ] with
label wσα · β.

Remark 2.14. We point out that the canonical connection is indeed compatible with the
axial function α defined by Theorem 2.13 (b). From the definitions we have

α(∇ef) = (wσα) · β

= Ad∗
w

(
β − 2⟨α, β⟩

|α|2
· α

)
= w · β − 2⟨α, β⟩

|α|2
(w · α) = α(f)− 2⟨α, β⟩

|α|2
· α(e).

Below, we will be only interested in the case that K = T , i.e, the T -action on the full
flag manifold G/T . Observe that in this case, as V (Γ) = W (G), the GKM graph has no
multiple edges.

Below, we will be interested in the case that K = T is a maximal torus of G. In this case,
from [1, Section IV.5] G/T admits a G-invariant Kähler structure, determined uniquely by a
choice of positive roots ∆+ ⊂ ∆G. Thus, the GKM graph Γ of the T -action on G/T obtains
a signed structure, which was described explicitly in [11, Section 3]: the axial function α, on
the oriented edge e from [w] to [wσα], with α ∈ ∆+, is given by α(e) = w · α.

2.4 Quasitoric manifolds

In this section we recall the notion of a (strongly) quasitoric manifold and prove a lemma that
will be needed in the proof of our realization result when considering smooth structures on
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the construction. We call two T -spaces twisted equivariantly homeomorphic/diffeomorphic
if they are equivariantly homeomorphic/diffeomorphic after pulling back one of the actions
along an automorphism of T .

Definition 2.15. A T k-action on a 2k-dimensional manifold M is called locally standard if
every point M admits an open neighborhood which is twisted equivariantly diffeomorphic
to an open subset of Ck, equipped with the standard T k-action by componentwise multipli-
cation.

The orbit space of a locally standard action naturally carries the structure of a manifold
with corners. We thus obtain two rather similar definitions:

Definition 2.16. A locally standard T k-action on a 2k-dimensional compact manifold is
called quasitoric if its orbit space is homeomorphic to a simple polytope P , in such a way
that l-dimensional orbits are mapped to the interior of a l-dimensional face of P . It is
called strongly quasitoric if this homeomorphism may be chosen to be a diffeomorphism of
manifolds with corners, where we equip P with its standard differentiable structure.

In case the T -action is noneffective, with kernel T ′, we will call it (strongly) quasitoric if
the action of T/T ′ is (strongly) quasitoric.

Quasitoric manifolds were defined in [4], while the notion of strongly quasitoric manifold
was introduced in [18]; in the same paper it was shown that in every equivariant homeo-
morphism class of quasitoric manifold of a quasitoric manifold there is, up to equivariant
diffeomorphism, a unique strongly quasitoric manifold.

Given a quasitoric manifold M with orbit space projection π : M → M/T = P , the
action induces a so-called characteristic function λ: for a facet F of P , we denote by λ(F )
the common isotropy group of the points in π−1(F ), which is a subcircle of T . Abstractly,
one defines a characteristic function as a map λ from facets of P to the set of subcircles of
T , satisfying that whenever F1, . . . , Fk are facets of P with F1 ∩ . . . ∩ Fk ̸= ∅, then the map
λ(F1)× . . .× λ(Fk)→ T is injective.

To any characteristic function λ on P one associates the canonical model P ×T/∼, where

(x, t) ∼ (y, s)⇐⇒ x = y, and t−1s ∈ λ(F1)× . . .× λ(Fk) whenever x ∈ F1 ∩ . . . ∩ Fk.

Any quasitoric manifoldM is equivariantly homeomorphic to its canonical model [4, Lemma
1.4]. Conversely, one may use the canonical model to find, for any given simple polytope P
with characteristic function λ, a quasitoric manifold, as one can construct a smooth structure
on the canonical model, see [2, Definition 7.3.14].

Note that the canonical model P × T/∼ admits a canonical section s : P → P × T/∼
of the orbit space projection π, via s(p) = [(p, e)]. In this sense, describing an equivari-
ant homeomorphism between any given quasitoric manifold M with orbit space P and its
canonical model corresponds to choosing a section s : P →M .

The following lemma is a consequence of [19].
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Lemma 2.17. Let T = T k be any compact torus and M be a (not necessarily effective)
strongly quasitoric T -manifold. Then there is a choice of the section s : P → M as above
such that the resulting description M = P × T/∼ has the following property: Let U ⊂ P be
open and H ⊂ T be a subgroup containing all isotropies occurring over U . Then the map
π′ : π−1(U)→ T/H induced by the projection P × T → T is smooth.

Proof. The statement for non-effective actions follows directly from the effective case and
we assume the action to be effective, so that the dimension of M is 2k. As the action is
locally standard, each point in M has a neighborhood which is equivariantly diffeomorphic
to Cn × T k−n × Rk−n where the action is described by some splitting T ∼= T n × T k−n such
that T n acts on Cn linearly and effectively, T k−n acts in standard fashion on itself, and the
action on the Rk−n component is trivial. In these coordinates π can be identified with the
map

Cn × T k−n × Rk−n −→ Rn
≥0 × Rk−n, ((z1, . . . , zn), t, y) 7−→ ((|z1|2, . . . , |zn|2), y).

We note that it is sufficient to prove the lemma in the case π−1(U) → U is of this form
since smoothness is a local issue and dividing out bigger subgroups from the target preserves
smoothness. In this case, the largest occurring isotropy is, with respect to the splitting of
T , the subgroup H = T n, so that T/H ∼= T k−n.

The above description of the orbit map admits the standard section

s0 : ((x1, . . . , xn), y) 7−→ ((
√
x1, . . . ,

√
xn), 1, y).

By [19, Theorem 3.3] there is a global section s : P →M with the following property: for any
coordinates as above there is a smooth function f : U → T such that s(x, y) = f(x, y)s0(x, y).
The section s induces an equivariant homeomorphism

Cn × T k−n × Rk−n ←− Rn
≥0 × Rk−n × T/∼.

Write f(x) = (g(x), h(x)) ∈ T n × T k−n. The map π′ in the lemma corresponds to the
composition

Cn × T k−n × Rk−n −→ Rn
≥0 × Rk−n × T/∼ −→ T k−n

which can be checked to be the map (z, t, y) 7→ t · h(π(z, t, y))−1. In particular, it is smooth.

In this paper, we will only be interested in four-dimensional quasitoric manifolds, which
are automatically strongly quasitoric, see [18].

3 From equivariant fiber bundles to graphs

In this section we prove the theorem below and discuss the necessity of the conditions in the
theorem through counterexamples.
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Theorem 3.1. Let F →M → B be a fiber bundle in which all spaces are T -GKM manifolds
and the projection map M → B is equivariant.

(i) Then the induced maps on one-skeleta induce a GKM fibration.

(ii) If additionally, for each vertex v of the graph of M , the weights of any horizontal edge
adjacent to v and any two vertical edges adjacent to v are linearly independent, then
transport along a horizontal edge induces a graph isomorphism between the respective
fiber graphs.

(iii) Assume that for each vertex v of the graph of M , the weights of any horizontal edge
adjacent to v and any three vertical edges adjacent to v are linearly independent. Fur-
thermore assume that any adjacent set of vertical edges can be completed to a basis of
the weight lattice. Then the induced GKM fibration is a GKM fiber bundle.

Statement (i) was proved prior to the present paper in [7]. However we did not deal
with the notion of GKM fiber bundles as it was not relevant in the low dimensional case
considered in [7]. While there is a large overlap in the arguments, the situation of GKM
fiber bundles needs a refined viewpoint and additional arguments in several places. Thus, it
seems appropriate to rewrite the whole completed argument here, as referencing refinements
of certain steps in the old argument would be rather inconvenient.

Remark 3.2. We point out that the conditions in (ii) and (iii) are not necessary for the
induced GKM fibration to be a GKM fiber bundle. In fact they are not satisfied by many of
the geometric realizations of GKM fiber bundles that we construct in this paper. However as
it turns out, it is not clear what the right geometric counterpart to the combinatorial situation
of a GKM fiber bundle should be. As illustrated by the counterexamples 3.3 and 3.4 below,
being a fiber bundle with equivariant projection is not sufficient. The counterexamples are
furthermore designed to show that several other natural geometric conditions fail to assure
the properties of a GKM fiber bundle on the combinatorial side.

Example 3.3. We give an example of an equivariant fiber bundle of GKM manifolds such
that the induced graph fibration is the collapse of the dashed edges and the identification of
the solid edges in the picture

In particular transport along horizontal edges is not a graph automorphism between the
fibers; consequently, statements (ii) and (iii) of Theorem 3.1 are false without additional
assumptions on the weights.

12



Let T = T 2 and x, y ∈ t∗ denote the dual basis to the standard basis. For some z in the
weight lattice we write S2

z for the sphere with the action given by z. For the construction
we take S2

x × S2
y with the standard action. Denoting by N,S the fixed points of S2, we now

blow up in the points (N,N) and (S, S), which gives a (quasi)toric manifold F with GKM
graph

y

x− y

x

x

y

x− y

(N,S)

(S,N)

We now consider the base manifold B = S2
x+y and use an equivariant clutching construc-

tion to produce a fiber bundle F → M → B. Let U = {(s, s)} ⊂ T denote the kernel of
the T -action on B. Then any U -equivariant automorphism φ : F → F extends uniquely to
a T -equivariant automorphism

S1
x+y × F −→ S1

x+y × F

such that (1, p) 7→ (1, φ(p)). Using this to glue two copies of D2
x+y × F over the boundary

circle gives an equivariant fiber bundle F → M → B. Hence to finish the construction we
construct a U -equivariant automorphism of F that swaps (N,S) and (S,N) while leaving
the other fixed points fixed.

We consider the conjugation p 7→ p on S2 given by reflection at a fixed hyperplane
through N,S. In particular with respect to the standard action one has t · p = t · p. Set
ψ : S2 × S2 → S2 × S2 as (p, q) 7→ (q, p). Now ψ is U -equivariant and swaps (N,S) and
(S,N). Finally, we will U -equivariantly isotope ψ to be the identity near (N,N) and (S, S).
Having done that it induces the desired automorphism on the blowup F .

We find a neighbourhood of (S, S) which is T -equivariantly homeomorphic to D4
x,y ⊂

Cx × Cy such that ψ corresponds to (v, w) 7→ (w, v). Identifying S1 ∼= U via s 7→ (s, s) the
U -action is of the form s · (v, w) = (sv, sw) where on the right hand side we use standard
complex multiplication. Let η : I → U(2) be a path from(

1 0
0 1

)
to

(
0 1
1 0

)
which is constant near the endpoints. Denote by C the map (v, w) 7→ (v, w). Then

D4 −→ D4, p 7−→ C(η(∥p∥)C(p)).

Is U -equivariant. It is the identity near 0 and extends by ψ near the boundary. Modi-
fying ψ in this way and doing the analogous construction near (N,N) yields the desired
automorphism φ of F .
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Example 3.4. We show that, even in the situation of (ii), of Theorem 3.1, one does not
necessarily have a GKM fiber bundle on the combinatorial side as it is possible to still violate
the condition that the weights uniformly transform by an automorphism when transported
horizontally. In particular, part (iii) of the theorem is false without additional assumptions
beyond those in (ii). We give a counterexample in two steps: the first construction will
produce a T 3-equivariant fiber bundle

S6 −→M −→ S2

such that the fiber over one fixed point is effective while the other one is not. In particular,
they will not be twisted equivariantly homeomorphic and will not have isomorphic GKM
graphs even though horizontal transport (which is uniquely defined by Remark 2.9) respects
the graph structures. Furthermore it is interesting to observe from the construction that
the structure group of this example commutes with the action. Hence this condition does
not ensure that the result is a GKM fiber bundle. We point out that this example could be
simplified while retaining the same properties. However we chose to give this non-minimal
version as we need it for the second construction. Using the total space M we will construct
a T 3-equivariant fiber bundle

M −→ N −→ S2

which does not induce a GKM fiber bundle even though it satisfies the following condition
(∗): Each point in the base admits an invariant neighborhood V and equivariant local
trivializations N |V ∼= V × M where the action on the right is the diagonal action with
respect to the actions on V and M . Note that in this case fibers over fixed points are T -
equivariantly homeomorphic and in particular their GKM graphs are abstractly isomorphic.
However the underlying isomorphism of graphs will be a different one than the one induced
by horizontal transport.

For the construction, let T = T 3 and x, y, z ∈ t∗ be weights dual to the standard basis.
We consider the T -space S6

x,y,x+2y ⊂ C3 ⊕ R where the weights in the index describe the
action on the C-factors. We now glue D2

x−y−z × S6
x,y,x+2y to D2

x−y−z × S6
y+z,x−z,x+2y over the

boundary along the T 3-equivariant automorphism

S1
x−y−z × S6

x,y,x+2y −→ S1
x−y−z × S6

y+z,x−z,x+2y, (s, (v1, v2, v3, h)) 7−→ (s, (sv1, sv2, v3, h))

Using this we build a T -equivariant fiber bundle S6 →M → S2, whose GKM graph fibration
is
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y + z

x− z
x+ 2y

x

y

x+ 2y

x− y − z x− y − z x− y − z

Note that the upper fiber is effective since the weights are a basis of the weight lat-
tice while the action on the lower fiber has a one-dimensional kernel. This concludes the
construction of M .

Now we construct an equivariant fiber bundle with fiberM over S2
z . We do this by gluing

two copies D2
z×M with the diagonal action along a T 3-equivariant automorphism S1

z×M →
S1
z ×M . To find the latter we consider a U -equivariant automorphism φ : M →M , where U

is the kernel of the weight z (i.e. the subtorus T 2 ⊂ T 3 given by the first two components).
For the gluing we use the unique T 3-equivariant map mapping (1, p) 7→ (1, φ(p)).

To define φ we observe that with the restricted U -action (i.e., setting z = 0), the two
pieces glued for the construction of M are D2

x−y × S6
x,y,x+2y and D2

x−y × S6
y,x,x+2y. Between

them we have the U -equivariant map

(p, (v1, v2, v3, h)) 7−→ (p, (v2, v1, v3, h))

which we can use to swap the two pieces. This is compatible with the gluing and defines
a U -equivariant automorphism φ of M which swaps the two fibers. This gives the desired
T 3-equivariant fiber bundle M → N → S2

z with GKM graph

y + z

x− z
x+ 2y

x

y

x+ 2y

x− y − z x− y − z

y + z

x− z
x+ 2y

x

y

x+ 2y

z

z

z

z
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As the weights of any horizontal edge and any two adjacent vertical edges are linearly in-
dependent, horizontal transport is uniquely defined by Remark 2.9. It corresponds to the
automorphism φ on the graph level. There is no automorphism of t∗ to make this compatible
with the weights: the weights of any triple edge need to get mapped onto those of the target
triple edge but in one case their span is 2-dimensional while in the other it is 3-dimensional.
We point out that condition (∗) is fulfilled since the inclusions of the two individual sum-
mands used for the gluing in the construction of N are equivariant trivializations.

We now turn towards the proof of Theorem 3.1 and prove some preliminary lemmas.

Lemma 3.5. Let F →M → B be an equivariant fiber bundle of GKM manifolds and U ⊂ T
be a codimension 1 subtorus such that MU has a connected component S with F ∩S ̸= ∅ and
S ̸⊂ F . Then FU = F T .

Proof. The component S is an invariant 2-sphere of M and it intersects F in a point p
of isotropy codimension 1 or 0. Since F is GKM, p is contained in an invariant 2-sphere
contained in F which is hence distinct from S. Thus two invariant 2-spheres of M meet
in p, implying that p is a fixed point. For every q ∈ F T one has a T -equivariant splitting
TqM = TqF ⊕ TpB where p is the image of p in B. By what we have established the right
hand summand contains an irreducible representation whose kernel contains U and due to
linear independence of the weights in M it follows that no such weight occurs in the left
hand summand. It follows that F contains no invariant 2-sphere whose isotropy contains U
and thus FU = F T .

Lemma 3.6. Let Γ,Γ′ be GKM graphs with labels in Zn/± 1 and the property that at each
point the edge weights are part of a Z-basis of Zn. Furthermore let p : Zn → Zk be a projection
such that Γ and Γ′, with the induced labels in Zk/ ± 1, are GKM3 graphs. Then the linear
transformation Zk → Zk associated to an isomorphism Γ → Γ′ of the Zk-GKM graphs can
be lifted to Zn to obtain an isomorphism of the Zn-GKM graphs.

Proof. We denote by α the Zn/ ± 1-axial functions on both graphs and by α the induced
Zk/±1-axial functions. For simplicity, when it is clear from the context, we will occasionally
use the same notation, for choices of lifts with fixed signs. On both Γ and Γ′, there is a unique
connection ∇ compatible with α. Note that it is also compatible with α. Let Φ: Γ→ Γ′ be
an isomorphism of graphs and Ψ: Zk → Zk an automorphism such that α(Φ(e)) = Ψ(α(e))
for all edges. For any adjacent edges e, f ∈ E(Γ) and any sign choice for the labels there
is some unique l ∈ Z and choice of sign for α(∇e(f)) such that α(∇e(f)) = α(f) + lα(e).
Hence,

α(Φ(∇e(f))) = Ψ(α(f)) + lΨ(α(e))

However we also have

α(∇Φ(e)Φ(f)) ≡ Ψ(α(f)) mod Ψ(α(e))

and it follows from the GKM3 condition that ∇Φ(e)Φ(f) = Φ(∇ef).
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Choose a vertex p and signs for all edge labels emanating from p. We make the corre-
sponding sign choices for the edge labels at Φ(p). By assumption these can be completed
to bases of Zn. Let Ψ: Zn → Zn be an automorphism that maps the basis at p onto an
appropriate choice of basis at Φ(p) according to the map Φ on those basis elements that are
weights of Ep. By construction we have

α(Φ(e)) = Ψ(α(e)) (3.1)

for all e ∈ Ep. We claim that in fact (3.1) already holds for all edges in Γ. This follows from
the following claim: Suppose (3.1) holds for adjacent edges e, f , then it holds for h := ∇e(f).

To prove the claim, first fix sign choices for α(e) and α(f) and the induced sign choices
for α(Φ(e)), α(Φ(f)). Since Ψ commutes with ∇, there are unique l,m ∈ Z and sign choices
for α(h), α(Φ(h)) such that

α(h) = α(f) + lα(e), α(Φ(h)) = α(Φ(f)) +mα(Φ(e)).

We obtain induced sign choices for α and have

Ψ(α(f) + lα(e)) = Ψ(α(h)) = ±α(Φ(h)) = ±α(Φ(f))±mα(Φ(e)) = ±Ψ(α(f)±mα(e))

which implies m = l. Now since (3.1) holds for e, f we obtain α(Φ(h)) = Ψ(α(h)) as
desired.

Proof of Theorem 3.1. Let p ∈ MT be a fixed point, denote p := π(p) and let Fp the fiber
over p. Then TpM splits into irreducible summands belonging to the invariant 2-spheres in
M emanating from p. The spheres belonging to summands in TpFp correspond to invariant
spheres in Fp and hence to vertical edges. We need to show that

(a) Any invariant 2-sphere S belonging to an irreducible summand outside of TpFp connects
p to a T -fixed point q in some fiber Fq different from Fp. In particular this implies that
the induced map is a graph fibration.

(b) It is possible to define a connection on the GKM graph of M which, along any edge,
respects horizontal and vertical edges, and which is such that the connection on hori-
zontal edges lifts a given connection from the base graph.

(c) Under the additional condition from (ii) the connection from (b) is unique in horizontal
direction, and induces an isomorphism of graphs of Fp and Fq.

(d) Under the additional condition of (iii) the isomorphism of part (b) admits a compatible
automorphism of the weight lattice such that it becomes an isomorphism of the GKM
graphs of Fp and Fq.

Let TpM = TpFp⊕Hp an invariant decomposition and choose S as above. Then the pro-
jection π : M → B induces an equivariant isomorphism Hp

∼= TpB. Hence TpS corresponds
to an irreducible summand in TpB and hence to an irreducible 2-sphere S ⊂ B with p ∈ S.
Let q denote the other fixed point of S.
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Let γ : I → S be an embedded path from p to q and let U ⊂ T be the kernel of the
T -action on TpS or equivalently the generic isotropy on S and S. Then we may regard I as a
U -equivariant map by equipping I with the trivial U -action. Thus the equivariant pullback
of the bundle along γ defines an equivariant subbundle F → E → I embedding into M .
Since γ is U -equivariantly nullhomotopic it follows that there is a U -equivariant trivialization
E ∼= Fp × I. The subspace corresponding to Fp × {1} is the fiber Fq over q where we set q
to be the point corresponding to (p, 1). It follows that p and q lie in a common connected
component of EU ⊂ MU . Since connected components of MU are invariant 2-spheres, we
deduce that S contains q. Now it follows from Lemma 3.5 that q is indeed a T -fixed point.
We have proved (a).

For the proof of (b) we first construct the connection along horizontal edges. We point out
that TpFp and TqFq are isomorphic as U -representations. To define the transport of vertical
edges along a horizontal sphere S we may choose any bijection between irreducible summands
of these representations such that the U -isomorphism type is preserved (corresponding to
a bijection between vertical edges such that labels fulfil the congruence relations in the
definition of a compatible connection). To transport horizontal edges along S, we fix a
connection on the GKM graph of B and use the unique lift to horizontal edges.

For the construction of the connection along vertical edges, let p′ be another fixed point
in Fp such that there is a vertical edge between p and p′. One has TpM ∼= TpFp ⊕ TpB and
Tp′M ∼= Tp′Fp ⊕ TpB as T -representations. Also, if H ⊂ T denotes the kernel of the weight
of the edge connecting p, p′ then TpFp and Tp′Fp agree as H-representations. Thus there is a
bijection between the irreducible factors of TpM and Tp′M that respects the decomposition
in horizontal and vertical factors, preserves the H-isomorphism type on vertical factors and
the T -isomorphism type on horizontal factors. This completes the proof of (b). We have
shown (i), i.e., that we have a GKM fibration.

For the proof of (c), i.e., of (ii), note that by the arguments from (a) the fixed trivialization
E ∼= Fp × I gives a U -equivariant homeomorphism Fp ∼= Fp × {0} ∼= Fp × {1} ∼= Fq which
sends T -fixed points to T -fixed points connected to the original point by a horizontal edge
whose principal isotropy is U . Under the additional assumption in (c) any two weights of
the T -action in Fp are linearly independent modulo the weight of S. Hence the restricted
U -action on Fp will again be GKM. The same holds for Fq. The GKM graph of the U -action
on the fibers is the restriction of the GKM graph of the T -action. In particular the U -
equivariant homeomorphism Fp ∼= Fq respects the graph structures. Hence in the definition
of the transport of vertical edges along horizontal edges in (b), there is a unique choice and
it will automatically induce an isomorphism of the underlying graphs.

In (d) the conditions of (iii) imply that the GKM graphs of the restricted U -actions on
Fp and Fq are GKM3. The claim now follows from Lemma 3.6.

4 Automorphisms of the GKM graph of G/T

We denote by Γ the GKM graph of the T -action on G/T , as described in Theorem 2.13.
We can assume that the compact connected semisimple Lie group G is simply-connected, as
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the homogeneous space G/T does not change upon passing to a cover: this is because any
subgroup of the (finite) center of a simply-connected G is automatically contained in any
maximal torus of G.

In this section, we give basic examples of automorphisms of Γ (see Definition 2.6) and
classify those that are compatible with the standard connection.

Example 4.1. Clearly, G-equivariant diffeomorphisms f : G/T → G/T also define T -
equivariant ones. The former are in one-to-one correspondence with NG(T )/T , where this
correspondence is given by sending f to its value w on eT , or, the other way around, sending
w to the map gT 7→ gwT , that is, right-multiplication with w. Such a map f induces a
graph automorphism Φ: Γ→ Γ in the following way:

(i) A vertex [w′] is sent to the vertex [w′w], where we consider w as an element in W (G).

(ii) The edge e between [w′] and [w′σα] (with label w′ · α) is sent to the edge between
[w′w] and [w′σαw] (with label w′ ·α). (Because w′σαw = w′ww−1σαw = w′wσw−1·α, by
Theorem 5.2 there is such an edge with label w′w · (w−1 · α) = w′ · α.)

(iii) Since the diffeomorphism is T -equivariant, we may define Ψ to be the identity map.

Example 4.2. We can also consider left-multiplication Lw0 : G→ G with an element w0 ∈
NG(T ). The multiplication clearly preserves NG(T ), whence it descends to an automorphism
W (G) → W (G), as well to an automorphism G/T → G/T which we denote both again by
Lw0 . We have the equation

Lw0(t · gT ) = w0tgT = w0tw
−1
0 w0gT = cw0(t)Lw0(gT ),

so Lw0 : G/T → G/T is not T–equivariant, but rather twisted T–equivariant with respect
to cw0 . Therefore, it induces a graph automorphism Lw0 : Γ → Γ by Lw0([w]) = [w0w],
and sending the edge between [w] and [wσα] labelled w · α to the edge between [w0w] and
[w0wσα] labelled w0w · α. It becomes an automorphism of the GKM graph Γ with respect
to Ψ(β) := β ◦ Ad−1

w0
= w0 · β. Note that Lw0 : Γ → Γ depends only on the class of w0 in

W (G) = NG(T )/T and therefore we denote the corresponding automorphism by L[w0].
Observe further that this automorphism respects the signed structure on Γ induced by a

choice of positive roots ∆+ ⊂ ∆G, cf. Section 2.3 above.

There is one more natural example coming from certain automorphisms of G. We remind
the reader of the relation between W (G) = NG(T )/T and the reflections σα. For each root
α there is an element wα ∈ NG(T ) such that

Adwα(hα) = −hα and Adwα(X) = X

where hα ∈ t corresponds to α under the identification of t and t∗ by the Killing form and
for all X in kerα. Thus Ad∗

wα
= σα (see [14, Theorem 11.35]).
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Example 4.3. For an automorphism ψ : G→ G which sends T to T we have

ψ(w)ψ(t)ψ(w)−1 = ψ(wtw−1) ∈ T

for w ∈ NG(T ) and all t ∈ T . Hence, ψ induces an automorphism ψ : W (G)→ W (G). With
the above identification of W (G) with a reflection group on t∗ we infer ψ(σα) = Ad∗

ψ(wα)

and thus ψ(σα) = σα◦dψ−1 . Moreover, ψ induces a diffeomorphism ψ : G/T → G/T , by
ψ(gT ) = ψ(g)T . As ψ(tgT ) = ψ(t)ψ(gT ), this diffeomorphism is twisted equivariant with
respect to ψ|T : T → T .

We obtain a graph automorphism Γ → Γ by declaring Φ([w]) := [ψ(w)] and sending
the edge between [w] and [wσα] labelled w · α to the edge between [ψ(w)] and [ψ(wσα)] =
[ψ(w)σα◦(dψ)−1 ] labelled ψ(w) · (α◦ (dψ)−1). Hence Φ becomes an automorphism of the GKM
graph Γ with respect to Ψ(β) := β ◦ (dψ)−1. As ψ : W (G)→ W (G) is a homomorphism, at
least e ∈ W (G) is fixed and so its corresponding vertex.

Definition 4.4. We say that the automorphisms in Example 4.2 are of Type 1 and that
those in Example 4.3 are of Type 2. The sets of each type form a group by concatenation.
The group of Type 1 automorphisms are isomorphic to W (G) and we denote the group of
Type 2 automorphisms by T2(Γ). Having fixed a choice of positive roots ∆+ ⊂ ∆G, we denote
by T+

2 (Γ) ⊂ T2(Γ) the subgroup of those Type 2 automorphism respecting the corresponding
signed structure, i.e. the equation α(Φ(e)) = Ψ(α(e)) from Definition 2.6 holds with signs.

Remark 4.5. At first glance, it might seem odd that right-multiplication featured in 4.1 is
not relevant to us here. However, since multiplication with w ∈ NG(T ) from the right can
be written as composition of left-multiplication with w (which is of Type 1) and conjugation
with w−1 (which is of Type 2), right-multiplication is already covered by the composition of
automorphisms of Type 1 and 2.

The main result of this section is the statement that all graph automorphisms come from
the examples mentioned before. But first, we need three lemmata, the second of which is
standard and proven for completeness. An abstract GKM graph is called effective if the edge
weights at any vertex span all of t∗.

Lemma 4.6. Any graph automorphism Φ: Γ → Γ, Ψ: Zn → Zn of any effective abstract
GKM graph (Γ, α) which preserves a compatible connection ∇ is uniquely determined by its
value on one vertex v and all edges emerging from it.

Proof. It is clear that the linear map ψ∗ : t
∗ → t∗ is uniquely determined, as the labels on

the edges at a vertex span t∗. We fix a connection ∇ which is preserved by ψ. Let v′ be a
vertex connected by the edge e to v. By definition, ψ maps v′ to the vertex ψ(v′) connected
by ψ(e) to ψ(v). Let e′ ̸= e be another edge emerging from v′. We may write it as ∇eê,
where ê is some edge emerging from v. Since ψ preserves ∇, the edge ψ(e′) is determined
by ψ(e) and ψ(ê). Since Γ was assumed to be connected, we are done.

Lemma 4.7. Let g be the Lie algebra of a compact semisimple Lie group, t a maximal abelian
subalgebra and ϕ : t → t a linear automorphism such that ϕ∗ : t∗ → t∗ permutes the roots of
g. Then ϕ extends to an automorphism of g.
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Proof. Consider the complexification gC of g as well as its root space decomposition

gC = tC ⊕
⊕
α∈∆

gα

with respect to the Cartan subalgebra tC. Moreover, by [15, Theorem VI.6.6] we may choose,
for each α ∈ ∆, a root vector Xα ∈ gα such that for all α, β ∈ ∆

1. [Xα, X−α] = Hα

2. [Xα, Xβ] = Nα,βXα+β if α + β ∈ ∆

3. [Xα, Xβ] = 0 if α + β ̸= 0 and α + β /∈ ∆.

for certain specific constantsNα,β satisfyingN−α,−β = −Nα,β. Here, Hα is the unique element
in the Cartan subalgebra such that α(H) = B(H,Hα) for all H ∈ tC, where B is the Killing
form of gC. By [15, Theorem VI.6.11], in particular Equation (6.12) in the proof of this
theorem, we may assume that the compact real form g of gC is given by

g = t⊕
⊕
α∈∆+

R(Xα −X−α)⊕
⊕
α∈∆+

Ri(Xα +X−α),

where ∆+ ⊂ ∆ is a choice of positive roots.
Denote by Π ⊂ ∆+ the corresponding set of simple roots. By [15, Theorem 2.108], the

isomorphism ϕ extends uniquely to a Lie algebra automorphism ϕ : gC → gC satisfying
ϕ(Xα) = Xα′ for all α ∈ Π, where α′ = (ϕ∗)−1(α). As the Killing form is invariant under
any Lie algebra automorphism, it follows that ϕ(Hα) = Hα′ for all α ∈ ∆. For all α ∈ Π,
condition 1. above implies that

Hα′ = ϕ(Hα) = ϕ([Xα, X−α]) = [Xα′ , ϕ(X−α)],

and hence, ϕ(X−α) = X−α′ for all simple α.
We claim that this automorphism ϕ automatically sends the compact real form g to itself.

To this end, take any α ∈ ∆+ and write α = α1 + . . . + αk as a sum of simple roots (not
necessarily distinct). We have

[Xα1 , [Xα2 , . . . , [Xαk−1
, Xαk

] . . .]] = Nα1,α2+...+αk
· . . . ·Nαk−1,αk

Xα,

where the coefficient of Xα does not vanish. Thus,

ϕ(Xα) =
1

Nα1,α2+...+αk
· . . . ·Nαk−1,αk

[Xα′
1
, [Xα′

2
, . . . , [Xα′

k−1
, Xα′

k
] . . .]]

=
Nα′

1,α
′
2+...+α

′
k
· . . . ·Nα′

k−1,α
′
k

Nα1,α2+...+αk
· . . . ·Nαk−1,αk

Xα′
1+...+α

′
k

=
Nα′

1,α
′
2+...+α

′
k
· . . . ·Nα′

k−1,α
′
k

Nα1,α2+...+αk
· . . . ·Nαk−1,αk

Xα′ .
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Analogously, we have

[X−α1 , [X−α2 , . . . , [X−αk−1
,−Xαk

] . . .]] = N−α1,−α2−...−αk
· . . . ·N−αk−1,−αk

X−α,

and because we showed above that ϕ(X−αi
) = X−α′

i
, we may compute analogously to above

ϕ(X−α) =
N−α′

1,−α′
2−...−α′

k
· . . . ·N−α′

k−1,−α
′
k

N−α1,−α2−...−αk
· . . . ·N−αk−1,−αk

X−α′

=
Nα′

1,α
′
2+...+α

′
k
· . . . ·Nα′

k−1,α
′
k

Nα1,α2+...+αk
· . . . ·Nαk−1,αk

X−α′ .

This implies that ϕ(g) is contained in, and hence equal to g.

Lemma 4.8. Automorphisms of Type 1 and 2 preserve the canonical connection on the GKM
graph Γ of G/T , see Theorem 2.13.

Proof. We denote by e the edge joining [w] and [wσα], with label w ·α, by f the edge joining
[w] and [wσβ], with label w · β. Then by the definition in Theorem 2.13, ∇ef is the edge
joining [wσα] and [wσασβ], with label wσα · β.

Let Φ be a Type 1 automorphism which is induced by left multiplication by w0 ∈ W (G).
Then Φ(e) connects [w0w] and [w0wσα], Φ(f) connects [w0w] and [w0wσβ], and therefore
∇Φ(e)Φ(f) joins [w0wσα] and [w0wσασβ]. Clearly this is equal to Φ(∇ef).

For Type 2 we have that Φ(e) joins [ψ(w)] and [ψ(w)σα◦dψ−1 ] and Φ(f) joins [ψ(w)] and
[ψ(w)σβ◦dψ−1 ] (we use the notation of Example 4.3). Thus, ∇Φ(e)Φ(f) joins [ψ(w)σα◦dψ−1 ]
and [ψ(w)σα◦dψ−1σβ◦dψ−1 ], the same as Φ(∇ef).

Having fixed a signed structure through a choice of positive roots ∆+ ⊂ ∆G (see the last
paragraph of Section 2.3) by definition of Type 2 automorphisms we have:

Lemma 4.9. The Type 2 automorphism associated to an automorphism ψ : G → G with
ψ(T ) = T respects the signed structure on Γ if and only if ψ : tC → tC permutes ∆+.

Recall that an inner automorphism of G is by definition conjugation with an element of
G, and that the group of outer automorphisms of G is defined as Out(G) := Aut(G)/Inn(G),
the quotient of all automorphisms by the inner automorphism group. We denote by Π ⊂ ∆+

the set of simple roots. Recall that as any two maximal tori in G are conjugate via G,
and the Weyl group acts simply transitively on the possible choices of positive roots, any
automorphism of G induces a well-defined permutation of Π, i.e., an automorphism of the
Dynkin diagram of G. Conversely, any automorphism of the Dynkin diagram induces an
automorphism ϕ : G → G with ϕ(T ) = T , such that ϕ : t → t permutes ∆+; also this is
well-known, but follows also from Lemma 4.7 above. Thus, we have constructed a natural
isomorphism T+

2 (Γ) ∼= Out(G).

Theorem 4.10. Let Aut∇(Γ) denote the group of automorphisms of Γ which preserve the
canonical connection of G/T . We define an action of T2(Γ) on W (G) by

ρ : T2(Γ) −→ Aut(W (G)), ρ(Φ)[w] := Φ[w].
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The map
η : W (G)⋉ρ T2(Γ) −→ Aut∇(Γ), ([w],Φ) 7−→ L[w] ◦ Φ

is an isomorphism, where the group on the left is the semidirect product induced by ρ.
Fixing a choice of positive roots ∆+ ⊂ ∆G, and denoting by Aut+∇(Γ) the group of auto-

morphisms of Γ fixing the canonical connection of G/T and the associated signed structure,
then by restriction of η we obtain an isomorphism W (G)⋉ρ T

+
2 (Γ) ∼= Aut+∇(Γ).

Proof. Recall that ρ is indeed a representation by definition of T2(Γ), cf. Example 4.3, and
thus W (G)⋉ T2(Γ) is a semidirect product. To show that η is a homomorphism, we have to
show first the identity

Φ ◦ L[w] ◦ Φ−1 = LΦ[w].

By Lemma 4.6 and Lemma 4.8 it suffices to check that both sides agree on a vertex and
all edges emerging from it. Clearly both sides agree on the identity element [e] of W (G).
Let [w̄] be a vertex different from [e] which lies on an edge emerging from [e]. Since Φ is
an automorphism of W (G) we have that both sides agree also on [w̄]. Since for G/T the
vertices [e], [w̄] determine a unique edge, the identity is proven. Now we have

η(([w1],Φ1) · ([w2],Φ2)) = η(([w1]ρ(Φ1)[w2],Φ1Φ2))

= L[w1]Φ1[w2] ◦ Φ1 ◦ Φ2

= L[w1] ◦ Φ1 ◦ L[w2] ◦ Φ2

= η([w1],Φ1) ◦ η([w2],Φ2).

It remains to show that η is bijective. Suppose η([w],Φ) = id, Then we have [e] = L[w]Φ[e] =
[w] and therefore Φ = id, which shows that η is injective. Now let Ψ ∈ Aut∇(Γ) and
set [w] := Ψ[e] and Φ := L[w]−1 ◦ Ψ. The theorem is proven if we show Φ ∈ T2(Γ). From
Φ[e] = [e] we infer that Φ permutes the edges emerging from [e]. From the definition of graph
automorphisms, there is an isomorphism Φ∗ : t

∗ → t∗ such that α(Φ(e))) = Φ∗(α(e)), where
α is the axial function defined in Theorem 2.13. Thus Φ∗ permutes the roots and Lemma 4.7
implies that Φ∗ can be extended to an automorphism of g. Since G is simply connected this
automorphism corresponds to an automorphism fΦ : G → G, such that (fΦ)∗ = Φ∗ : g → g.
The Type 2 automorphism induced from fΦ, see Example 4.3, coincides with Φ, which follows
from Lemma 4.6, because they coincide on all edges emerging from [e].

The statement on the automorphism group of the signed structure follows immediately
from Lemma 4.9 and the fact that Type 1 automorphisms respect it.

5 Realizability

Let π : Γ′ → B be a T -GKM fiber bundle, where B is a two-valent GKM-graph and fibers
are isomorphic to the GKM graph Γ of G/T as described in Section 2.3. We assume now
and throughout that any two weights at some vertex (and hence any vertex) of B, which
are elements in the weight lattice of T , span a primitive lattice in the latter (or equivalently
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the common kernel of the weights of B is a connected subgroup). We label the n vertices
of B by v1, . . . , vn, vn+1 = v1, denote the edge connecting vi with vi+1 by ei, and we identify
Γ with Γ′

v1
, the fiber over v1, via a fixed isomorphism. By definition of a GKM fibration,

we obtain isomorphisms of GKM graphs Φei : Γ
′
vi
→ Γ′

vi+1
, whose concatenation defines an

automorphism Φ := Φen ◦ . . . ◦ Φe1 : Γ → Γ. We denote the associated linear maps by Ψei

and put Ψ := Ψen ◦ . . . ◦Ψe1 . In the following, we will refer to Φ as the twist automorphism
of the GKM fiber bundle π.

Let us fix on Γ a signed structure associated to some choice of positive roots ∆+ ⊂ ∆G.

Lemma 5.1. If the twist automorphism Φ respects the signed structure, i.e., is an element
of Aut+∇(Γ), then the fiber bundle carries a fiberwise signed structure.

Proof. The fiber graph Γ = Γ′
v1

carries a signed structure. The isomorphisms Φei inductively
induce signed structures on all other fibers such that by definition Φei preserves the signed
structures on Γ′

vi
and Γvi+1

. It remains to check that this is globally well defined, i.e. after a
full rotation around B, Φen is compatible with the chosen signed structures on Γ′

vn and Γ′
v1
.

But this is equivalent to Φ preserving the signed structure on Γ′
v1
.

The goal of this section is the proof of the following

Theorem 5.2. Let Γ → Γ′ → B be a T -GKM fiber bundle, where Γ is the GKM graph of
G/T and B is 2-regular. Furthermore assume that the common kernel of the weights of B
is a connected subgroup of T and that the twist automorphism Φ lies in Aut+∇(Γ). Denote by
Φ = Φ1 ◦Φ2 the decomposition as in Theorem 4.10, with Φ1 = L[w] for some w ∈ W (G) and
Φ2 ∈ T+

2 (Γ).

1. If Φ2 = Id, then the bundle is realizable. More precisely, there exists a smooth T -
equivariant fiber bundle Z → X with fibers over fixed points twisted equivariantly dif-
feomorphic to G/T , such that the T -action on Z is of GKM type with GKM graph Γ′

and X is a quasitoric 4-fold with GKM graph B.

2. If Φ2 ̸= Id, then the map H∗(Γ′) → H∗(Γ) induced by the fiber inclusion is not sur-
jective. In particular, the GKM fiber bundle is not realizable by an equivariant fiber
bundle in which base, total space, and fibers over fixed points are GKM manifolds.

Remark 5.3. A version of this theorem in which the assumption that the twist automor-
phism respects the signed structure was missing is contained in [17].

Example 5.4. Consider the Lie group G = (SU(2))3 with maximal torus T = T 3. Let x, y, z
denote the weights dual to the circles acting on each factor. Then G/T ∼= (S2)3 and the
GKM graph is a cube with edge labels x, y, z, where parallel edges share the same weight.
As base space we take CP 2 with the weights

x

x− y
y
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Over this we consider the GKM fibre bundle given by

x+ z
z

y + z x+ z
z
x+ y + z y + z

z
x+ y + z y + z

z
x+ z

x x− y y

where horizontal edges are in fact horizontal, fibers are the cubes spanned by the three
non-horizontal edges at every vertex (where horizontal edges of the respective label emanate
from every vertex of the cube, only one of which is visible in the picture), and the rightmost
depicted vertex is glued to the first vertex, with edges of same label being identified. In
particular the twist automorphism swaps the two edges with label x+ z and y+ z in the left
most fiber. Note that this indeed defines a GKM fiber bundle: as it preserves the canonical
connection, we obtain an induced connection on the total space of the fibration satisfying
the conditions in Definitions 2.8 and 2.10. The twist automorphism is of Type 2, induced
by the automorphism of G, swapping the first and third factor, hence by Theorem 5.2 this
GKM fiber bundle cannot be realized geometrically.

A somewhat systematic construction of realizable bundles is discussed in Section 6.

Proof of (i). We use the notation introduced in the beginning of the section. We claim that
the dual of the linear map Ψei : t

∗ → t∗ fixes the codimension 1-subgroup Ki defined by the
weight α(ei) of ei. To see this, consider any weight β of a vertical edge in the fiber over vi.
Then, for any v ∈ kerα(ei) we have β(Ψ

∗
ei
(v)) = Ψei(β)(v) = (β+cα(ei))(v) = β(v) for some

constant c; note that there do not appear any signs because the fiber bundle is fiberwise
signed. Hence, as the fiber weights span t∗, it follows that Ψ∗

ei
(v) = v. Thus, the common

kernel of the weights of B gives a codimension 2 subtorus T ′ ⊂ T which is fixed by all the
Ψ∗
ei
. In particular, the automorphism Ψ associated to the twist automorphism Φ, which is

in (i) assumed to be of Type 1, is of the form Ψ = L[w], with w contained in the (connected)
centralizer ZT (T

′).
As explained in Section 2.4, the GKM graph B as in Theorem 5.2 is realizable by a

non-effective strongly quasitoric manifold X with GKM graph B. Its orbit space is diffeo-
morphic, as a manifold with corners, to a convex 2-dimensional polytope P , whose boundary
corresponds combinatorially to the graph B. The kernel of the action is the codimension 2
subtorus T ′. There is a continuous section of the orbit map projection π : X → P which
induces, as explained in Section 2.4, an equivariant homeomorphism X = P × T/∼, where
∼ identifies points in the T -fibers in the following way: over the interior of P we project to
T/T ′, over each edge in the boundary we divide by the codimension 1 subtorus which is the
kernel of the corresponding weight in B and over the vertices we collapse the entire fiber.
We choose this section, and hence the identification X ∼= P × T/∼, as in Lemma 2.17. Let
D ⊂ P be a small open disk in the interior.
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Now we divide P\D into open regions Ui where Ui contains a single vertex vi and Ui∩Ui+1

intersect as depicted the figure above (note that parts of the boundary of D and parts of the
edges are contained in Ui). Let Ui = π−1(Ui).

We first construct a certain principal G-bundle. For i = 1, . . . , n + 1, let Ψ̃i : T → T be
the automorphism induced by Ψ∗

ei
and Gi denote the T -space which is G with the action

given by left multiplication precomposed with the automorphism Ψ̃i−1◦ . . .◦Ψ̃1. We consider
Bi = Ui × Gi with the diagonal action (we treat B1 and Bn+1 as different T -spaces even
though the underlying spaces are the same). Let Si = Ui ∩ Ui+1

∼= (0, 1) × [0, 1] × T/∼,
where the [0, 1] component runs from ∂P at 0 to ∂D at 1 and ∼ collapses T to T/T ′ over
points in (0, 1) × (0, 1] and to T/Ki over (0, 1) × {0}. By construction, we have that Si
is a smooth submanifold of X with non-empty boundary (given by the preimage of a part
of the boundary of D under π). For i = 1, . . . , n, we glue Bi and Bi+1 along equivariant
diffeomorphism Si × Gi → Si × Gi+1 defined as follows: consider the unique T -equivariant
diffeomorphism

(0, 1)× [0, 1]× T ×Gi −→ (0, 1)× [0, 1]× T ×Gi+1

(with T acting diagonally on T×Gi) which restricts to the identity on (0, 1)×[0, 1]×{1}×G.
It is of the form (a, b, t, g) 7→ (a, b, t, φt(g)) with φt(g) = t · (t−1 · g), where the left hand
multiplication is understood as the action of Gi+1 and the right hand multiplication is in
Gi. Now since the Ki-actions on Gi and Gi+1 agree by construction it follows that t 7→ φt
descends to T/Ki and hence we get an induced T -equivariant homeomorphism

Si ×Gi −→ Si ×Gi+1; .

Smoothness can be checked componentwise with the only interesting case being that the
map Si × Gi → Gi+1 is smooth. Let p : Si → T/Ki be the projection. Then this factors as
(s, g) 7→ φp(s)(g). Clearly φt(g) depends smoothly on t and g, and p is smooth by Lemma
2.17.

By assumption the automorphism Φ̃n◦. . .◦Φ̃1 is given by conjugation cw with w ∈ NG(T ).
The map (x, g) 7→ (x,w−1g) is hence a T -equivariant diffeomorphism Bn+1 → B1 which we
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use to identify the two. Let Y denote the resulting space given by the gluing of all the
Bi. It carries a left T -action commuting with the obvious right G-action acting on all the
Gi-factors by right multiplication. The latter gives Y the structure of a principal G-bundle
over X\π−1(D).

We investigate this bundle over the boundary ∂D ∼= S1. We claim that Y |∂D is (T ×
G)-equivariantly diffeomorphic to the following mapping torus: Consider the unique T -
equivariant extension T × G1 → T × G1 of (1, g) 7→ (1, w−1g). Since cw fixes T ′ it follows
that w ∈ ZG(T ′) and hence the above map descends to a diffeomorphism

f : T/T ′ ×G1 −→ T/T ′ ×G1.

We note that f is equivariant with respect to the left T -action and the right G-action and
hence the mapping torus Mf = [0, 1]× T/T ′ ×G1/ ∼ is a smooth (T ×G)-manifold.

Now in order to see Y |∂D ∼= Mf we observe that Bi|∂D is given by Ji × T/T ′ × Gi for
some interval Ji ⊂ ∂D. For an appropriate parametrization ∂D ∼= [0, 1]/∼, the unique T -
equivariant maps Ji×T/T ′×G1 → Bi which are the identity on Ji×{1·T ′}×G piece together
to a map from [0, 1]×T/T ′×G1 into the gluing of B1 up until Bn+1. After identifying Bn+1

and B1 as above this descends to the desired diffeomorphism Mf → Y |∂D.
Since ZG(T

′) is connected (as T ′ is connected), f is (T ×G)-equivariantly isotopic to the
identity. Consequently Y |∂D is in fact (T×G)-equivariantly diffeomorphic to S1×T/T ′×G1.
Hence we may complete Y to a closed smooth (T×G)-manifold Z by gluing in D×T/T ′×G.
By construction, the left T -action on the quotient of Z by the right T -action coming from
the right G-action gives the desired T -equivariant G/T -bundle over X.

For the proof of (ii) we make some preliminary observations.

Lemma 5.5. Let Γ be the GKM graph of G/T .

(a) Any automorphism of Type 1 induces the identity on H∗(Γ).

(b) Any nontrivial automorphism of Type 2 induces a nontrivial map on H2(Γ).

Proof. Since H∗(Γ) ∼= H∗(G/T ) and both types of automorphisms correspond to continuous
transformations of G/T it is sufficient to work with the latter. Left multiplication with
elements inWG(T ) is non-equivariantly homotopic to the identity since G is connected. This
proves (a). For part (b) we may consider a Type 2 automorphism of Γ which is induced by
an automorphism φ : G→ G preserving T and inducing a nontrivial map on t∗ (as otherwise
the automorphism of the graph is the identity by Lemma 4.6). We consider G as a T -space
with the standard T -action by left multiplication. Using a functorial construction of the
universal T -bundles (see [16]) φ induces an automorphism of the universal T -bundle i.e. a
map φ̃ : ET → ET such that φ̃(t ·e) = φ(t) · φ̃(e). Now (φ, φ̃) : G×ET → G×ET is twisted
equivariant with respect to φ|T and induces an automorphism of the Borel construction GT .
Thus we obtain a commutative diagram

G/T

��

GT

��

//oo BT

��
G/T GT

//oo BT
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where all vertical maps are the ones induced by φ and the horizontal maps are the standard
projections of the Borel construction GT . All horizontal arrows induce isomorphisms on H2:
the left hand arrows are homotopy equivalences due to the freeness of the T -action and for
the right hand side this follows from the Serre spectral sequence of the Borel fibration due to
G being simply connected. Hence it suffices to show that H2(BT )→ H2(BT ) is nontrivial.
The transgression of the Serre spectral sequence of the universal T -bundle identifies this with
the map φ∗ : H1(T )→ H1(T ), which, after passing to real coefficients, can be identified with
the map induced on t∗. In particular it is nontrivial.

Lemma 5.6. Let Γ be any GKM graph. For any unoriented edge e ∈ E(Γ), let Se be the
graph consisting of e and its adjacent vertices. Then the map

H2(Γ) −→
⊕
e∈E(Γ)

H2 (Se)

induced by the inclusions is an injection.

Proof. If x ∈ H2
T (Γ) projects to a nontrivial element of H2(Γ), then there is an edge e ∈ E(Γ)

where x takes different values at the vertices adjacent to e. In particular the image of x in
H2(Se) is nontrivial.

Proof of Theorem 5.2 part (ii). Note first that if the bundle were realizable, then the Serre
spectral sequence of the fiber bundle would collapse since the cohomology of GKM manifolds
is concentrated in even degrees. This is however equivalent to cohomological surjectivity of
the fiber inclusion. For the proof of the combinatorial statement we assume that the inclusion
ι : Γ → Γ′ induces a surjection on cohomology and show that Φ induces the trivial map on
H2(Γ). Then it will follow from Lemma 5.5 that Φ2 = Id.

For e ∈ E(Γ) let ie : Se → Γ be the inclusion of the GKM subgraph consisting of e and its
adjacent vertices. By Lemma 5.6, in order to show Φ∗ = Id it suffices to show (Φ ◦ ie)∗ = i∗e
for all e ∈ E(Γ). Due to the cohomological surjectivity of ι it is in fact sufficient to prove
(ι ◦ Φ ◦ ie)∗ = (ι ◦ ie)∗.

Recall that the twist morphism Φ is of the form Φ = Φen◦. . .◦Φe1 , where Φei : Γ
′
vi
→ Γ′

vi+1

is an isomorphism of GKM graphs with respect to the linear isomorphisms Ψei : t
∗ → t∗.

Denote by w11 and w12 the two vertices of the vertical edge e in Γ = Γ′
v1
; applying the

Φek we obtain vertices wij = Φei−1
◦ · · · ◦ Φe1(w1j), for j = 1, 2. The vertices wi1 and wi2

are connected by the edge Φei−1
◦ · · · ◦ Φe1(e), with label γi := Ψei−1

◦ · · · ◦ Ψe1(α(e)). We
have to show that for any cohomology class x ∈ H2

T (Γ
′) the pair consisting of the evaluations

(x(w11), x(w12)) differs from the pair (Ψ−1
e1
◦· · ·◦Ψ−1

en (x(wn1)),Ψ
−1
e1
◦· · ·◦Ψ−1

en (x(wn2))) only by
an element of the form (β, β), with β ∈ H2(BT ;Z)∗, implying that the images of (ι ◦ ie)∗(x)
and (ι ◦ Φ ◦ ie)∗(x) agree in H2(Se).

We will show this statement for the pair (Ψei(x(wi1)),Ψei(x(wi2))) and (x(wi+11), x(wi+12)),
which inductively proves the claim above.

From Lemma 5.1 we obtain a fiberwise signed structure, such that all vertical weights
have fixed signs compatible with the Φei . For horizontal weights we fix an arbitrary sign.
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We then have the following relations:

x(wi+11)− x(wi1) = kα(ei)

x(wi+12)− x(wi2) = lα(ei)

x(wi2)− x(wi1) = mγi

x(wi+12)− x(wi+11) = nγi+1

for some k, l,m, n ∈ Z. We have to compare

x(wi+11)−Ψei(x(wi1)) = x(wi1)−Ψe1(x(wi1)) + kα(ei)

with

x(wi+12)−Ψei(x(wi2)) = x(wi2) + lα(ei)−Ψei(x(wi1) +mγi)

= x(wi1)−Ψei(x(wi1)) + lα(ei) +mγi −mΨei(γi).

Due to the fiberwise signed condition we have positive signs in the equation Ψe1(γi) =
γi + uα(ei) for some u ∈ Z whence we have to show that

k = l −mu.

But combining the equations above, we have

n(γi + uα(ei)) = nΨei(γi) = nγi+1 = x(wi+12)− x(wi+11)

= x(wi2) + lα(ei)− x(wi1)− kα(ei)
= mγi + (l − k)α(ei),

hence by the GKM condition we have n = m and l − k = nu = mu.

6 Examples of GKM fiber bundles

6.1 Admissible tuples

Finally, we would like to give a large class of examples of T -GKM fiber bundles Γ→ Γ′ → B,
where Γ is the GKM graph of G/T and B a 2-regular GKM graph such that the common
kernel T ′ of the weights of B is connected, whose twist automorphism is of Type 1, see
Example 4.2. These GKM fiber bundles will be realizable by Theorem 5.2. We will try to
be as general as possible at first, in order to make the class of examples as large as possible,
but will certainly have to make some restrictions later on.

Choose a compact simply-connected Lie group G, let T ⊂ G be a maximal torus, and
w ∈ W (G) such that cw fixes a subtorus T ′ ⊂ T of codimension 2. Let B be any two-valent
GKM graph whose labels are elements of the annihilator ann(t′) ⊂ t∗. We assume that the
common kernel of the labels in ann(t′) ⊂ t∗ is equal to the connected subgroup T ′ – among
others, this allows us to apply Theorem 5.2.
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Having fixed w, T ′ and B we ask how to construct signed GKM fiber bundles Γ→ Γ′ → B
with twist automorphism of Type 1 defined by w, i.e., β 7→ w · β = β ◦ Ad−1

w , and subject
to the condition that the labels of the fiber graph over some base vertex v1 are the stan-
dard labels of the GKM graph of G/T . Starting there, we label the n vertices of B by
v1, v2, . . . , vn, vn+1 = v1, denote by αi the signed weight of the edge (vi, vi+1), and by Ti the
subgroup given by the kernel of αi.

To construct the total space of Γ → Γ′ → B, we consider Γ′ := (γ × Γ)/ ∼, where γ is
an abstract path graph with n + 1 vertices vi and fibers over v1 and vn+1 are identified via
the twist automorphism L[w] of Type 1, see Example 4.2. So we only need to care about the
labeling and the connection. We equip the horizontal edges with the labels corresponding to
a simple closed path around B. It remains to specify what the labeling on all vertical edges is.

Assume for the moment that we have already fixed the labeling on the fiber Γ′
v1

over
v1, endowed with its canonical connection. Now we ask what the edge weights of Γ′

v2
might

look like. From the definition of a GKM fiber bundle, see Section 2.2, we have that any
potential set of edge labels of Γ′

v2
arises from Γ′

v1
by identifying the graphs via horizontal

transport and applying to the labels an element in A1, the group of automorphisms of T
that fix T1 = ker(α1). Conversely, any such automorphism defines in this way a set of edge
labels on Γ′

v2
.

We can go on like this, defining in particular the groups Ai, until we reach Γ′
vn . We have

now chosen elements
ψ1 ∈ A1, . . . , ψn−1 ∈ An−1.

In principle, this defines the labels on the entire graph Γ. In order for the result to define a
GKM fiber bundle, the labels of Γ′

vn need to be compatible with Γ′
v1

in the same way, i.e.,
ψn ◦ . . . ◦ ψ1 = Adw. This leads us to the following

Definition 6.1. We call a tuple (ψ1, . . . , ψn) admissible if ψn ◦ . . . ◦ ψ1 = Adw, and define
Aadm ⊂ A1 × . . .×An to be the set of admissible tuples.

In order to construct examples of GKM fiber bundles, we therefore have to

• construct admissible tuples.

• Give a criterion for when the labeling obtained by such tuples actually satisfies the
GKM condition of two adjacent weights being linearly independent. Note that this
condition has not yet been considered in the constructions of the labels and that in
theory fiber weights might become colinear to adjacent basic weights in the construction
process.

• find a compatible connection with respect to the now obtained labeling.

Let us first treat the last point. On γ × Γ we consider the connection of product type,
restricting to the canonical connection on each fiber. This induces a well-defined connection
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on the quotient Γ′, since the canonical connection is preserved by any automorphism of Type
1, see Lemma 4.8. The resulting connections is compatible with the labels as transport along
a horizontal edge of label β shifts vertical labels by an automorphism which restricts to the
identity on Zn/⟨β⟩.

Remark 6.2. Note that the labeling of Γ′
v1

does not enter in the definition of ’admissibility’.
Note further that the GKM condition (ii) in Definition 2.3 is satisfied at each edge. Thus,
given an admissible tuple, we may hope to choose the initial labeling Γ′

v1
in such a way that

the induced labels at each vertex of Γ′ are pairwise linearly independent. This is achieved
by the following lemma.

Lemma 6.3. Fix Γ′
v1
, B, Φ, and an admissible tuple (ψ1, . . . , ψn) as above.

(i) If none of the labels on Γ′
v1

are contained in the real plane spanned by the base weights,
then the resulting labeled graph Γ′ is a GKM graph.

(ii) One can always choose labels on Γ′
v1

subject to the condition in (i) while fixing the other
choices in the construction.

Proof. We start with the proof of statement (ii). Let γ1, . . . , γk be the set of all of the
weights of Γ ∼= Γ′

v1
with its standard labeling, see Section 2.3. We identify the weight lattice

with Zm. Choose a rational plane in Qm not containing the γi and we define E ⊂ Zm as
its integral points. There is an automorphism ψ of Zm that sends E to ann(t′) ⊂ t∗, where
the codimension two subtorus T ′ is fixed by Adw. Clearly none of the ψ(γi) is contained in
ann(t′). The labels on Γ′

v1
∼= Γ given by the ψ(γi) do the job.

In order to show that in this case Γ is a GKM graph, we only need to show that the
labels at any vertex of Γ′ are pairwise linearly independent. This can be seen as follows: at
each vertex, it is already clear that no pair of horizontal and no pair of vertical weights are
colinear. Also, for a vertex above v1, no base weight is colinear to a vertical weight, because
by assumption none of the vertical weights is contained in the real span of the base weights.

We observe that the last condition holds for each vertex over v2, because it holds over
v1 and vertical weights over v2 are the same as vertical weights over v1 modulo base weights
(due to GKM condition (ii)). Inductively, it holds over all vertices of B. This finishes the
proof.

6.2 The construction of admissible tuples

To construct admissible tuples, it is more convenient to identify automorphisms of T with
their respective automorphisms of the Lie algebra, that is, with elements of GL(m,Z). In
that way, each ψi ∈ Ai is now an element in GL(m,Z) which fixes ti (the Lie algebra of
Ti) and in particular t′ ⊂ t. We choose a basis w1, . . . , wm−2 for the canonical lattice of the
latter, given by the kernel of the exponential map, and extend this to a basis w1, . . . , wm for
the lattice of t such that wm−1 is in tn and wm is in tn−1. To see that this is possible, consider
the exact sequence of tori T ′ → T → T 2 defined by the homomorphism (αn−1, αn) : t→ Z2
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which splits by [10, p. 57, Exercise 7] (here it enters that we assumed the common kernel
of αn−1 and αn to be equal to the connected group T ′). Then we define wm−1 and wm to be
elements in t that are sent to (0, 1) and (1, 0) respectively.
With respect to this basis, any ψi ∈ Ai is of the form(

1Zm−2 Bi

0 Ai

)
where Bi is some (m − 2) × 2-matrix and Ai is in GL(2,Z), such that Ai and Bi are Ti-
compatible in the sense that the combined matrix fixes ti.

Remark 6.4. An equivalent formulation is the following: the lattice of Ti has a basis
consisting of w1, . . . , wm−2 and v = awm−1 + bwm for a, b ∈ Z. Then for v = (a, b)T the
condition of Ti-compatibility becomes Aiv = v and Biv = 0.

Note that by the choice of wm−1, wm, the matrices An−1 and An need to be of the form

An−1 =

(
±1 0
∗ 1

)
, An =

(
1 ∗
0 ±1

)
Of course, Adw has the same form as the ψi, and is thus determined by matrices Bw and Aw.

Theorem 6.5. For the basis (w1, . . . , wm), any choice of the above A1, . . . , An such that
An · . . . ·A1 = Aw, and for any choice of compatible B1, . . . , Bn−2, there are unique compatible
Bn−1 and Bn such that ψn · . . . · ψ1 = Adw, where ψi is the automorphism defined by the
matrix (

1Zm−2 Bi

0 Ai

)
.

Proof. We set ψ = Adw · ψ−1
1 · . . . · ψ−1

n−2. This is of the form

ψ =

(
1Zm−2 B
0 An · An−1

)
.

Here, B is of the form (u, v), where u, v ∈ Zm−2. We wish to decompose this matrix ψ as
ψn · ψn−1. Recall that An−1 and An are given by

An−1 =

(
±1 0
kn−1 1

)
, An =

(
1 kn
0 ±1

)
.

for certain integers kn−1 and kn. Moreover, due to compatibility, the right entries of Bn−1

as well as the left entries of Bn have to be 0, so we make the ansatz

ψn =

(
1Zm−2 (0, v′)
0 An

)
, ψn−1 =

(
1Zm−2 (u′, 0)
0 An−1

)
which satisfy the compatibility conditions since by the initial assumptions we have tn−1 =
⟨w1, . . . , wm−2, wm⟩ and tn = ⟨w1, . . . , wm−1⟩. Their product ψn · ψn−1 is

ψn · ψn−1 =

(
1Zm−2 (u′ + kn−1v

′, v′)
0 An · An−1

)
Thus, u′ = u− kn−1v and v′ = v is the unique solution. This finishes the proof.
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Remark 6.6. Let A be the lower right 2 × 2 part of Adw. Then by Theorem 6.5 and
Remark 6.4 any factorization A = An . . . A1 with Ai being Ti-compatible can be completed
to an admissible tuple. In fact completions correspond bijectively to choices of B1, . . . , Bm−2

subject to the condition that each of them annihilate a certain element of of Z2 defined by
the respective Ti.

It seems hard to classify all such solutions, but nonetheless we can find many for certain
quasitoric bases, including all toric ones that are not CP2, and lots of Lie groups G.

Example 6.7. Suppose that there is a subalgebra su(3) ⊂ g for which

• T decomposes as a product of a codimension 2 subtorus T ′ ⊂ T and the 2-torus coming
from su(3) such that the adjoint representation of T ′ fixes su(3).

• there exists a Weyl group element w ∈ W (G) that fixes T ′ and acts on the maximal
abelian subalgebra of su(3) as e1 7→ −e3, e2 7→ e1, where e1 = 2πi diag(1,−1, 0), e2 =
2πi diag(0, 1,−1) and e3 = 2πi diag(1, 0,−1) (in the usual identification of W (su(3))
with S3, this is the element (23) ◦ (12)).

One already obtains interesting examples by choosing g = su(3) and T ′ = {e}.
For some b ∈ Z, we choose the basis wm−1 = e1 − e2 and wm = −(b− 1)e1 + be2 for the

canonical lattice of the maximal torus in su(3) considered to be in g, and a basis w1, . . . , wm−2

for the canonical lattice of t′. By the first of the two above assumptions, w1, . . . , wm is a
basis of t. The matrix of the isomorphism Adw with respect to the basis wm−1 and wm is
now

Adw =

(
b b− 1
1 1

)(
−1 1
−1 0

)(
1 −b+ 1
−1 b

)
=

(
−3b+ 1 3b2 − 3b+ 1
−3 3b− 2

)
.

Let B be a graph of a 4-dimensional effective quasitoric T 2-manifold where there are at
least two edges labeled with the same weight1; without loss of generality, we may assume
that these are the edges (vl, vl+1) and (vn, v1) for some 2 ≤ l ≤ n − 2. We pull back the
weights on B along a homomorphism T → T/T ′ ∼= T 2, giving us the graph B labeled with
linear forms α1, . . . , αn in t∗, such that wm−1 is in tn = ker(αn) and wm is in tn−1 = ker(αn−1).
Then by assumption, ker(αl) = tl equals tn, and both are spanned by w1, . . . , wm−1 while
tn−1 is spanned by w1, . . . , wm−2, wm.
We set Ak to be the identity for k ̸= n − 1, n, l, and need to choose Al, An−1 and An such
that Adw = An ·An−1 ·Al. Furthermore the Ai need to satisfy the Ti-compatibility conditions
which here is equivalent to Al, An being upper triangular with 1 in the top left and An−1

being lower triangular with 1 in the bottom right.
We can therefore make the ansatz

An =

(
1 b
0 1

)
1This is the case for all toric manifolds except CP2, since these can be obtained from repeated blow ups

of a Hirzebruch surface, see [3, Theorem 10.4.3]
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which leads to

An−1 · Al = A−1
n · Adw =

(
1 −b
0 1

)(
−3b+ 1 3b2 − 3b+ 1
−3 3b− 2

)
=

(
1 −b+ 1
−3 3b− 2

)
Thus, we can choose

An−1 =

(
1 0
−3 1

)
, Al =

(
1 −b+ 1
0 1

)
.

By Theorem 6.5 and Remark 6.6, we obtain many admissible tuples in that setting.
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